Molecular Dynamics Simulation of Homogeneous Crystal Nucleation in Polyethylene Citation
نویسندگان
چکیده
Using a realistic united-atom force field, molecular dynamics simulations were performed to study homogeneous nucleation of the crystal phase at about 30% supercooling from the melts of n-pentacontahectane (C150) and a linear polyethylene (C1000), both of which are long enough to exhibit the chain folding that is characteristic of polymer crystallization. The nucleation rate was calculated and the critical nuclei were identified using a mean first-passage time analysis. The nucleation rate was found to be insensitive to the chain length in this range of molecular weight. The critical nucleus contains about 150 carbons on average and is significantly smaller than the radius of gyration of the chains, at this supercooling. A cylinder model was used to characterize the shape of the crystal nuclei and to calculate the interfacial free energies. A chain segment analysis was performed to characterize the topology of the crystal surface in terms of loops (including folds) and tails. The length distribution of loops is broad, supporting the “switchboard model” for the early stage crystals formed at deep supercooling. Using the survival probability method, the critical nucleus size was determined as a function of temperature. The interfacial free energies were found to be temperature-dependent. The free energy barrier and nucleation rate as functions of temperature were also calculated and compare favorably with experiments.
منابع مشابه
Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects
Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...
متن کاملMolecular simulation of crystal nucleation in n-octane melts.
Homogeneous nucleation of the crystal phase in n-octane melts was studied by molecular simulation with a realistic, united-atom model for n-octane. The structure of the crystal phase and the melting point of n-octane were determined through molecular dynamics simulation and found to agree with experimental results. Molecular dynamics simulations were performed to observe the nucleation events a...
متن کاملHomogeneous and heterogeneous mechanisms of superheated solid melting and decay
The kinetics of homogeneous nucleation in superheated solid and heterogeneous melting from the open crystal surface are investigated via molecular-dynamics method. The system under consideration is superheated copper in the EAM potential model. The temperature dependence of the lifetime of superheated crystal and the rate of homogeneous nucleation are calculated according to the previously deve...
متن کاملMolecular Dynamics Simulation of Potassium Chloride Melting (II. Constant Volume and Constant Pressure Simulation of Filled System)
We have used a simple ionic potential to simulate the melting of KCI pseudo-infinite crystal. Two MD simulations, one with constant Volume and the other with constant pressure condition are performed. These results are compared with the previous micro-sample simulation results. In the constant volume simulation the melting temperature increase substantially with increasing pressure. A method fo...
متن کاملSurface nucleation in the crystallisation of polyethylene droplets.
The division of semi-crystalline polymeric material into small domains is an effective tool for studying crystal nucleation. The scaling behavior of the nucleation rate as a function of domain size can reveal important information about the mechanism responsible for the birth of a crystal nucleus. We have investigated the process of crystal nucleation in a system of dewetted polyethylene drople...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013